Abstract

In this article, we propose a new efficient self‐adaptive method and prove that it converges strongly to a minimum‐norm solution of a generalized split feasibility problem in real Hilbert spaces. The proposed method is derived from a definite discrete dynamical system in time, which combines both the relaxation and inertial techniques for the purpose of increasing the rate of convergence of the iterative scheme. Furthermore, the method requires the monotonicity and Lipschitz continuity condition of the underlying single‐valued cost operator , and it employs some simple self‐adaptive stepsizes that are generated at each iteration by some easy computations. As a by‐product, we obtain methods for solving other classes of generalized split feasibility problems in real Hilbert spaces. Two major merits of our scheme in solving image restoration problems over related schemes are the higher signal‐to‐noise ratio value and lower CPU time for generating recovered images. Finally, we analyze our methods with different related strong convergent methods in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.