Abstract
In Part II of this paper we extend the results obtained in Part I for total variation minimization in image restoration towards the following directions: first we investigate the decomposability property of energies on levels, which leads us to introduce the concept of levelable regularization functions (which TV is the paradigm of). We show that convex levelable posterior energies can be minimized exactly using the level-independant cut optimization scheme seen in Part I. Next we extend this graph cut scheme to the case of non-convex levelable energies.We present convincing restoration results for images corrupted with impulsive noise. We also provide a minimum-cost based algorithm which computes a global minimizer for Markov Random Field with convex priors. Last we show that non-levelable models with convex local conditional posterior energies such as the class of generalized Gaussian models can be exactly minimized with a generalized coupled Simulated Annealing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.