Abstract

In this paper, we propose a fast and efficient way to restore blurred and noisy images with a high-order total variation minimization technique. The proposed method is based on an alternating technique for image deblurring and denoising. It starts by finding an approximate image using a Tikhonov regularization method. This corresponds to a deblurring process with possible artifacts and noise remaining. In the denoising step, a high-order total variation algorithm is used to remove noise in the deblurred image. We see that the edges in the restored image can be preserved quite well and the staircase effect is reduced effectively in the proposed algorithm. We also discuss the convergence of the proposed regularization method. Some numerical results show that the proposed method gives restored images of higher quality than some existing total variation restoration methods such as the fast TV method and the modified TV method with the lagged diffusivity fixed-point iteration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.