Abstract
Image registration is central to different applications such as medical analysis, biomedical systems, and image guidance. In this paper we propose a new algorithm for multimodal image registration. A Bayesian formulation is presented in which a likelihood term is defined using an observation model based on coefficient and geometric fields. These coefficients, which represent the local intensity polynomial transformations, as the local geometric transformations, are modeled as prior information by means of Markov random fields. This probabilistic approach allows one to find optimal estimators by minimizing an energy function in terms of both fields, making the registration between the images possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.