Abstract
Iterative coordinate ascent algorithms have been shown to be useful for image recovery, but are poorly suited to parallel computing due to their sequential nature. This paper presents a new fast converging parallelizable algorithm for image recovery that can be applied to a very broad class of objective functions. This method is based on paraboloidal surrogate functions and a concavity technique. The paraboloidal surrogates simplify the optimization problem. The idea of the concavity technique is to partition pixels into subsets that can be updated in parallel to reduce the computation time. For fast convergence, pixels within each subset are updated sequentially using a coordinate ascent algorithm. The proposed algorithm is guaranteed to monotonically increase the objective function and intrinsically accommodates nonnegativity constraints. A global convergence proof is summarized. Simulation results show that the proposed algorithm requires less elapsed time for convergence than iterative coordinate ascent algorithms. With four parallel processors, the proposed algorithm yields a speedup factor of 3.77 relative to single processor coordinate ascent algorithms for a three-dimensional (3-D) confocal image restoration problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.