Abstract
Ground based long-range passive imaging systems often suffer from degraded image quality due to a turbulent atmosphere. While methods exist for removing such turbulent distortions, many are limited to static sequences which cannot be extended to dynamic scenes. In addition, the physics of the turbulence is often not integrated into the image reconstruction algorithms, making the physics foundations of the methods weak. In this article, we present a unified method for atmospheric turbulence mitigation in both static, and dynamic sequences. We are able to achieve better results compared to existing methods by utilizing (i) a novel space-time non-local averaging method to construct a reliable reference frame, (ii) a geometric consistency, and a sharpness metric to generate the lucky frame, (iii) a physics-constrained prior model of the point spread function for blind deconvolution. Experimental results based on synthetic and real long-range turbulence sequences validate the performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.