Abstract

A reconstruction theory for intensity diffraction tomography (I-DT) has been proposed that permits reconstruction of a weakly scattering object without explicit knowledge of phase information. We investigate the I-DT reconstruction problem assuming an incident (paraxial) spherical wave and scanning geometries that employ fixed source-to-object distances. Novel reconstruction methods are derived by identifying and exploiting tomographic symmetries and the rotational invariance of the problem. An underlying theme is that symmetries in tomographic imaging systems can facilitate solutions for phase-retrieval problems. A preliminary numerical investigation of the developed reconstruction methods is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.