Abstract

In cone-beam computed tomography (CBCT) imaging, a scanning configuration with an offset-detector is often used for extending the field of view (FOV) of the system. Due to the truncation of data at certain views, data are required to be collected over a full angular range (FAR) of 360◦ for accurate reconstruction by use of existing analytical-based algorithms. However, there exist interests in practical applications for limited-angular-range (LAR) imaging because it may allow for the reduction of radiation dose and scanning time and for the avoidance of the collisions between the moving gantry and scanned objects. Under such imaging conditions, existing algorithms generally yield reconstructions with significant artifacts. In this work, we develop and investigate a directional-total-variation (DTV) algorithm for image reconstruction from partially truncated data collected over LARs. By using the DTV algorithm, we have performed numerical simulation studies with partially truncated data collected from a pelvic phantom over different LARs with an offset-detector CBCT system. The results of the numerical studies demonstrate that the proposed algorithm can yield, from partially truncated LAR data, images with significantly reduced artifacts that are observed otherwise in images obtained with existing analytical-based algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.