Abstract
An image can be reconstructed from the finite set of its orthogonal moments. Since geometric and complex moment kernels do not satisfy orthogonality criterion, direct image reconstruction using them is deemed to be difficult. In this paper, we propose a technique to reconstruct an image from either geometric moments (GMs) or complex moments (CMs). We utilize a relationship between GMs and Stirling numbers of the second kind. Then, by using the invertibility property of the Stirling transform, the original image can be reconstructed from its complete set of either geometric or complex moments. Further, based on previous works on blur effects on a moment domain and using the proposed reconstruction methods, a formulation is shown to obtain an estimated original image from the degraded image moments and the blur parameter. The reconstruction performance of the proposed methods on blur images is presented to validate the theoretical framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.