Abstract
Propagation-based X-ray phase-contrast tomography (PCT) seeks to reconstruct information regarding the complex-valued refractive index distribution of an object. In many applications, a boundary-enhanced image is sought that reveals the locations of discontinuities in the real-valued component of the refractive index distribution. We investigate two iterative algorithms for few-view image reconstruction in boundary-enhanced PCT that exploit the fact that a boundary-enhanced PCT image, or its gradient, is often sparse. In order to exploit object sparseness, the reconstruction algorithms seek to minimize the l(1)-norm or TV-norm of the image, subject to data consistency constraints. We demonstrate that the algorithms can reconstruct accurate boundary-enhanced images from highly incomplete few-view projection data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.