Abstract

We proposed compressive sensing to reduce the sampling rate of the image and improve the accuracy of image reconstruction. Compressive sensing requires that the representation of the image is sparse on a certain basis. We use wavelet transformation to provide sparsity matrix basis. Meanwhile, to get a projection matrix using a random orthonormal process. The algorithm used to reconstruct the image is orthogonal matching pursuit (OMP) and Iteratively Reweighted Least Squares (IRLS). The test result indicates that a high quality image is obtained along with the number of coefficients M. IRLS has a good performance on PSNR than OMP while OMP takes the least time for reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.