Abstract

Standard actions are crucial to sports training of athletes and daily exercise of ordinary people. There are two key issues in sports action recognition: the extraction of sports action features, and the classification of sports actions. The existing action recognition algorithms cannot work effectively on sports competitions, which feature high complexity, fine class granularity, and fast action speed. To solve the problem, this paper develops an image recognition method of standard actions in sports videos, which merges local and global features. Firstly, the authors combed through the functions and performance required for the recognition of standard actions of sports, and proposed an attention-based local feature extraction algorithm for the frames of sports match videos. Next, a sampling algorithm was developed based on time-space compression, and a standard sports action recognition algorithm was designed based on time-space feature fusion, with the aim to fuse the time-space features of the standard actions in sports match videos, and to overcome the underfitting problem of direct fusion of time-space features extracted by the attention mechanism. The workflow of these algorithms was explained in details. Experimental results confirm the effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.