Abstract

Classical ghost imaging is a correlation-imaging technique in which the image of the object is found through intensity correlations of light. We analyze three different quality parameters, namely the visibility, the signal-to-noise ratio (SNR), and the contrast-to-noise ratio (CNR), to assess the performance of double- and triple-intensity correlation-imaging setups. The source is a random partially polarized beam of light obeying Gaussian statistics, and the image quality is evaluated as a function of the degree of polarization (DoP). We show that the visibility improves when the DoP and the order of imaging increase, while the SNR behaves oppositely. The CNR is for the most part independent of DoP and the imaging order. The results are important for the development of new imaging devices using partially polarized light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.