Abstract

In this study, we assess image quality in computed tomography scans reconstructed via DLIR (Deep Learning Image Reconstruction) and compare it with iterative reconstruction ASIR-V (Adaptive Statistical Iterative Reconstruction) in CT (computed tomography) scans of the head. The CT scans of 109 patients were subjected to both objective and subjective evaluation of image quality. The objective evaluation was based on the SNR (signal-to-noise ratio) and CNR (contrast-to-noise ratio) of the brain's gray and white matter. The regions of interest for our study were set in the BGA (basal ganglia area) and PCF (posterior cranial fossa). Simultaneously, a subjective assessment of image quality, based on brain structure visibility, was conducted by experienced radiologists. In the assessed scans, we obtained up to a 54% increase in SNR for gray matter and a 60% increase for white matter using DLIR in comparison to ASIR-V. Moreover, we achieved a CNR increment of 58% in the BGA structures and 50% in the PCF. In the subjective assessment of the obtained images, DLIR had a mean rating score of 2.8, compared to the mean score of 2.6 for ASIR-V images. In conclusion, DLIR shows improved image quality compared to the standard iterative reconstruction of CT images of the head.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.