Abstract

SummaryImage quality can be measured visually. In the human visual system, a compressed image can be judged by the human eye. Image quality may not be perceived to decline in a region with low compression. However, image quality clearly declines in a region with high compression. As image compression increases, image quality gradually transitions from visually lossless to lossy. In this study, we aim to explain this phenomenon. A few images from different datasets were selected and compressed using JJ2000 and Apollo, which are well‐known image compression algorithms. Then, error‐based and correlation‐based metrics were applied to these images. The correlation‐based metrics agree with human‐vision evaluations in experiments, but the error‐based metrics do not. Inspired by the positive result of the correlation‐based metrics, a new metric named the simple correlation factor (SCF) was proposed to explain the aforementioned phenomenon. The results of the SCF show good consistency with human‐vision results for several datasets. In addition, the computation efficiency of the SCF is better than that of the existing correlation‐based metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.