Abstract

We review more than 200 applications of neural networks in image processing and discuss the present and possible future role of neural networks, especially feed-forward neural networks, Kohonen feature maps and Hopfield neural networks. The various applications are categorised into a novel two-dimensional taxonomy for image processing algorithms. One dimension specifies the type of task performed by the algorithm: preprocessing, data reduction/feature extraction, segmentation, object recognition, image understanding and optimisation. The other dimension captures the abstraction level of the input data processed by the algorithm: pixel-level, local feature-level, structure-level, object-level, object-set-level and scene characterisation. Each of the six types of tasks poses specific constraints to a neural-based approach. These specific conditions are discussed in detail. A synthesis is made of unresolved problems related to the application of pattern recognition techniques in image processing and specifically to the application of neural networks. Finally, we present an outlook into the future application of neural networks and relate them to novel developments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.