Abstract

Achieving our emission reduction goals requires the bulk production of carbon-neutral fuels and chemicals, which are catalytically produced through heterogeneous fixed bed chemical reactors. To optimise and scale-up these reactors, accurate and validated Computational Fluid Dynamics (CFD) models are crucial. Of especial importance to CFD simulations is the accurate depiction of the 3D bed structure used during the experimental setup. A direct one-to-one coupling between experiments and simulations can be achieved by scanning the experimental bed using computed tomography and reconstructing the scanned images as a 3D geometry for CFD simulations. However, processing of the scanned images is necessary to minimise highly coarse features that could impact the overall mesh size. A highly poly-dispersed lab-scale fixed bed reactor, previously scanned and analysed, is processed using various image-processing operations. Depending on the number and the crudeness of the processing operations, the bed is progressively deformed, which impacts both its porosity and its interparticle pore connectivity. The impact of image-processing becomes more evident when the hydrodynamic behaviour, i.e., X-, Y-, and Z-velocity and static pressure, of the beds is explored. CFD simulations revealed highly heterogeneous flow profiles, with the maximum velocity reached being 16-times higher than the average superficial velocity within the bed. Moreover, small modifications in local topological features introduce significant changes to the flow profiles, while the 3D pore interconnectivity was seen to play an equally important role as the interparticle porosity. A particle size study revealed that large particles form less interconnected networks with higher pore volumes, which significantly reduce the flow velocity and the pressure drop experienced by the flow. The generated results yield key insights towards a deeper understanding of the behaviour of fixed bed chemical reactors, highly valuable for catalyst and reactor engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call