Abstract

Imagery collected via Unmanned Aerial System (UAS) platforms has become popular in recent years due to improvements in a Digital Single-Lens Reflex (DSLR) camera (centimeter and sub-centimeter), lower operation costs as compared to human piloted aircraft, and the ability to collect data over areas with limited ground access. Many different application (e.g., forestry, agriculture, geology, archaeology) are already using and utilizing the advantages of UAS data. Although, there are numerous UAS image processing workflows, for each application the approach can be different. In this study, we developed a processing workflow of UAS imagery collected in a dense forest (e.g., coniferous/deciduous forest and contiguous wetlands) area allowing users to process large datasets with acceptable mosaicking and georeferencing errors. Imagery was acquired with near-infrared (NIR) and red, green, blue (RGB) cameras with no ground control points. Image quality of two different UAS collection platforms were observed. Agisoft Metashape, a photogrammetric suite, which uses SfM (Structure from Motion) techniques, was used to process the imagery. The results showed that an UAS having a consumer grade Global Navigation Satellite System (GNSS) onboard had better image alignment than an UAS with lower quality GNSS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.