Abstract
The image potential state is one of the fundamental surface electronic states and has a great relevance to many surface phenomena, but its accurate description is a great challenge for the semilocal density functional. Here, we use the nonlocal van der Waals density functional to describe the image potential states of graphene, graphite, and carbon nanotubes. We found that although it does not yield the correct image potential outside the surface, the van der Waals density functional improves the description of image potential states because of the nonlocal correlation potential. Our study demonstrates the usefulness of the van der Waals density functional to study the surface electronic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.