Abstract

Sparse coding can be applied to train an overcomplete dictionary on time-lapse seismic data or images. The learned dictionary generally consists of sparse representations of one or more images. We then use such sparse representations, along with L1-regularization techniques, to predict missing values in seismic images by solving an inverse problem. The practical outcome of the proposed methodology can be a significant reduction in field operational costs by requiring only sparse instead of dense surveys, and by integrating in the seismic images the information captured by the learned dictionary from previous time-lapse and baseline images. A synthetic example is presented to test the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.