Abstract
The image inpainting is a well-known task of visual editing. However, the efficiency strongly depends on sizes and textural neighborhood of “missing” area. Various methods of image inpainting exist, among which the Kohonen Self-Organizing Map (SOM) network as a mean of unsupervised learning is widely used. The weaknesses of the Kohonen SOM network such as the necessity for tuning of algorithm parameters and the low computational speed caused the application of multi- agent system with a multi-mapping possibility and a parallel processing by the identical agents. During experiments, it was shown that the preliminary image segmentation and the creation of the SOMs for each type of homogeneous textures provide better results in comparison with the classical SOM application. Also the optimal number of inpainting agents was determined. The quality of inpainting was estimated by several metrics, and good results were obtained in complex images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Procedia Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.