Abstract

Large-area multiphoton laser scanning microscopy (LMLSM) can be applied in biology and medicine for high sensitivity and resolution tissue imaging. However, factors such as refractive index mismatch induced spherical aberration, emission/excitation absorption and scattering can result in axial intensity attenuation and lateral image heterogeneity, affecting both qualitative and quantitative image analysis. In this work, we describe an image correction algorithm to improve three-dimensional images in LMLSM. The method consists of multiplying the measured nonlinear signal by a three-dimensional correction factor, determined by the use of twophoton images of the appropriate specimens and specimen absorption and scattering properties at the excitation and emission wavelengths. The proposed methodology is demonstrated in correcting multiphoton images of objects imbedded in uniform fluorescent background, lung tissue, and Drosophila larva.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call