Abstract

A large proportion of the population suffers from endocrine disruption, e.g., menopausal women, which might result in accelerated aging and a higher risk for developing cognitive disorders. Therefore, it is crucial to fully understand the impact of such disruptions on the brain to identify potential therapeutic strategies. Here, we show using resting-state functional magnetic resonance imaging that ovariectomy and consequent hypothalamus-pituitary-gonadal disruption result in the selective dysconnectivity of 2 discrete brain regions in mice. This effect coincided with cognitive deficits and an underlying pathological molecular phenotype involving an imbalance of neurodevelopmental/neurodegenerative signaling. Furthermore, this quantitative mass spectrometry proteomics-based analysis of molecular signaling patterns further identified a strong involvement of altered dopaminergic functionality (e.g., DAT and predicted upstream regulators DRD3, NR4A2), reproductive signaling (e.g., Srd5a2), rotatin expression (rttn), cellular aging (e.g., Rxfp3, Git2), myelination, and axogenesis (e.g., Nefl, Mag). With this, we have provided an improved understanding of the impact of hypothalamus-pituitary-gonadal dysfunction and highlighted the potential of using a highly translational magnetic resonance imaging technique for monitoring these effects on the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.