Abstract

In steady-state hydraulic tomography, the head data recorded during a series of pumping or/and injection tests can be inverted to determine the transmissivity distributions of an aquifer. This inverse problem is usually under-determined and ill-posed. We propose to use structural information inferred from a guiding image to constrain the inversion process. The guiding image can be drawn from soft data sets such as seismic and ground penetrating radar sections or from geological cross-sections inferred from the wells and some geological expertise. The structural information is extracted from the guiding image through some digital image analysis techniques. Then, it is introduced into the inversion process of the head data as a weighted four direction smoothing matrix used in the regularizer. Such smoothing matrix allows applying the smoothing along the structural features. This helps preserving eventual drops in the hydraulic properties. In addition, we apply a procedure called image-guided interpolation. This technique starts with the tomogram obtained from the image-guided inversion and focus this tomogram. These new approaches are applied on four synthetic toy problems. The hydraulic distributions estimated from the image-guided inversion are closer to the true transmissivity model and have higher resolution than those computed from a classical Gauss–Newton method with uniform isotropic smoothing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call