Abstract

Reflection moveout of SV-waves in transversely isotropic media with a vertical symmetry axis (VTI media) can provide valuable information about the model parameters and help to overcome the ambiguities in the inversion of P-wave data. Here, to develop a foundation for shear-wave migration velocity analysis, we study SV-wave image gathers obtained after prestack depth migration. The key issue, addressed using both approximate analytic results and Kirchhoff migration of synthetic data, is whether long-spread SV data can constrain the shear-wave vertical velocity [Formula: see text] and the depth scale of VTI models. For homogeneous media, the residual moveout of horizontal SV events on image gathers is close to hyperbolic and depends just on the NMO velocity [Formula: see text] out to offset-to-depth ratios of about 1.7. Because [Formula: see text] differs from [Formula: see text], flattening moderate-spread gathers of SV-waves does not ensure the correct depth of the migrated events. The residual moveout rapidly becomes nonhyperbolic as the offset-to-depth ratio approaches two, with the migrated depths at long offsets strongly influenced by the SV-wave anisotropy parameter σ. Although the combination of [Formula: see text] and σ is sufficient to constrain the vertical velocity [Formula: see text] and reflector depth, the tradeoff between σ and the Thomsen parameter ε on long-spread gathers causes errors in time-to-depth conversion. The residual moveout of dipping SV events is also controlled by the parameters [Formula: see text], σ, and ε, but in the presence of dip, the contributions of both σ and ε are significant even at small offsets. For factorized v(z) VTI media with a constant SV-wave vertical-velocity gradient [Formula: see text], flattening of horizontal events for a range of depths requires the correct NMO velocity at the surface, the gradient [Formula: see text], and, for long offsets, the parameters σ and ε. On the whole, the nonnegligible uncertainty in the estimation of reflector depth from SV-wave moveout highlights the need to combine P- and SV-wave data in migration velocity analysis for VTI media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call