Abstract

Pyramid decomposition in the NSCT transformation is a band-pass filtering process in the frequency domain where different scales of images are orthogonal. However, from the perspective of the image content, correlation is likely to exist between the fused images, and this kind of decomposition makes images of different scales contain redundant information, as a result of which the fused image may not capture the subtle information from the original images. In order to overcome the above-mentioned problem, an effective image fusion method based on redundant-lifting non-separable wavelet multi-directional analysis (NSWMDA) and adaptive pulse coupled neural network (PCNN) has been proposed. The original images are firstly decomposed by using the NSWMDA into several sub-bands in order to retain texture detail and contrast information of the images, and then adaptive PCNN algorithm is applied on the high-frequency directional sub-bands to extract the high-frequency information. The low-frequency sub-bands are evaluated by weighted average based on Gaussian kernel with a chosen maximum fusion rule. Results from experiments show that the proposed method can make the fused image maintains more texture details and contrast information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.