Abstract

A ray-based approach that models the geometric mapping properties of a flat optical detector based on a microlens array is presented. The investigated optical detector substitutes a single-aperture lens optic for planar and tomographic data acquisition in space-constrained small-animal imaging applications. The formalism implements forward mapping of a three-dimensional object volume onto a two-dimensional sensor surface as well as the backprojection (inverse mapping) of acquired sensor data sets. The object focus distance is the sole free parameter for the inverse mapping. By variation of the object focus distance, arbitrary object surface areas within the computed object images can be focused. The inverse mapping algorithm was applied to an experimentally acquired sensor data set from a three-dimensional phantom. The results are compared with focal point image formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call