Abstract

Over the past decade, many efforts have been made in passive image forensics. Although it is able to detect tampered images at high accuracies based on some carefully designed mechanisms, localization of the tampered regions in a fake image still presents many challenges, especially when the type of tampering operation is unknown. Some researchers have realized that it is necessary to integrate different forensic approaches in order to obtain better localization performance. However, several important issues have not been comprehensively studied, for example, how to select and improve/readjust proper forensic approaches, and how to fuse the detection results of different forensic approaches to obtain good localization results. In this paper, we propose a framework to improve the performance of forgery localization via integrating tampering possibility maps. In the proposed framework, we first select and improve two existing forensic approaches, i.e., statistical feature-based detector and copy-move forgery detector, and then adjust their results to obtain tampering possibility maps. After investigating the properties of possibility maps and comparing various fusion schemes, we finally propose a simple yet very effective strategy to integrate the tampering possibility maps to obtain the final localization results. The extensive experiments show that the two improved approaches used in our framework significantly outperform the state-of-the-art techniques, and the proposed fusion results achieve the best $\mathrm {F_{1}}$ -score in the IEEE IFS-TC Image Forensics Challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.