Abstract

In the article 'Exposing Fake Images with Forensic Similarity Graphs', O. Mayer and M. C. Stamm introduce a novel image forgery detection method. The proposed method is built on a graph-based representation of images, where image patches are represented as the vertices of the graph, and the edge weights are assigned in order to reflect the forensic similarity between the connected patches. In this representation, forged regions form highly connected subgraphs. Therefore, forgery detection and localization can be cast as a cluster analysis problem on the similarity graph. The authors present two graph clustering methods to detect and localize image forgeries. In this paper, we present briefly the method and offer an online executable version allowing everyone to test it on their own suspicious images. **This is an MLBriefs article, the source code has not been reviewed!**<br> **The original source code is [[available here|https://omayer.gitlab.io/forensicgraph/]] (last checked 2022/11/07).**

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.