Abstract
The feed-forward architectures of recently proposed generative adversarial network can learn the non-linear mapping from low-resolution output to high-resolution output. However, this approach does not fully address the mutual dependencies of different resolution images. By analyzing the zero-sum game, the paper proposes an image enhancement algorithm by using conditional generative adversarial networks based on improved non-saturating game. Firstly, the enhancement image obtained by the GAN model is adopted as a condition against the network object image, making the original image learning the network structure of the object image with dim-small. Our proposed generative adversarial networks can obtain a clearer image through improved non-saturating game, and it can still get a large gradient and sufficient learning, which makes up for the deficiencies in the mini-maximum game. In addition, the loss function of the network adds the loss of discriminator to guide discriminator to generate high quality images. We compared the proposed method (SRG) with other methods including SC, SRCNN, VESPCN and ESPCN, and the proposed method resulted in obvious improvements in the peak signal-to-noise ratio (PSNR) by 2.348 dB and in structural similarity index measurement (SSIM) by 1.89% to enhance the visual effects of nature images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.