Abstract

The Gyrator transform (GT), chaotic random phase masks (CRPMs) and a random permutation of the Jigsaw transform (JT) are utilized to design an images encryption-decryption system. The encryption-decryption system is based on the double random phase encoding (DRPE) in the Gyrator domain (GD), this technique uses two random phase masks (RPMs) to encode the image to encrypt (original image) into a random noise. The RPMs are generated by using chaos, these masks are CRPMs. The parameters of the chaotic function have the control of the generation of the CRPMs. We apply a random permutation to the resulting image of the DRPE technique, with the purpose of obtaining an encrypted image with a higher randomness. In order to successfully retrieve the original image (without errors or noise-free) at the output of the decryption system is necessary to have all the proper keys, which are: the rotation angles of the GTs, the parameters of the chaotic function utilized to generate the two CRPMs and the random permutation of the JT. We check and analyze the validity of the image encryption and decryption systems by means of computing simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call