Abstract
This study proposes a chaos‐based image encryption scheme using Henon map and Lorenz equation with multiple levels of diffusion. The Henon map is used for confusion and the Lorenz equation for diffusion. Apart from the Lorenz equation, another matrix with the same size as the original image is generated which is a complex function of the original image. This matrix which is configured as a diffusion matrix permits two stages of diffusion. Due to this step, there is a strong sensitivity to input image. This encryption algorithm has high key space, entropy very close to eight (for grey images) and very less correlation among adjacent pixels. The highlight of this method is the ideal number of pixels change rate and unified average changing intensity it offers. These ideal values indicate that the encrypted images produced by this proposed scheme are random‐like. Further, a cryptanalysis study has been carried out to prove that the proposed algorithm is resistant to known attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.