Abstract

In this paper, we first propose a memristive chaotic system and implement it by circuit simulation. The chaotic dynamics and various attractors are analysed by using phase portrait, bifurcation diagram, and Lyapunov exponents. In particular, the system has robust chaos in a wide parameter range and the initial value space, which is favourable to the security communication application. Consequently, we further explore its application in image encryption and present a new scheme. Before image processing, the external key is protected by the Grain-128a algorithm and the initial values of the memristive system are updated with the plain image. We not only perform random pixel extraction and masking with the chaotic cipher, but also use them as control parameters for Brownian motion to obtain the permutation matrix. In addition, multiplication on the finite field GF(2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">8</sup> ) is added to further enhance the cryptography. Finally, the simulation results verify that the proposed image encryption scheme has better performance and higher security, which can effectively resist various attacks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call