Abstract

This paper proposes a novel image encryption algorithm based on an integer form of chaotic mapping and 2-order bit compass diffusion technique. Chaotic mapping has been widely used in image encryption. If the floating-point number generated by chaotic mapping is applied to image encryption algorithm, it will slow encryption and increase the difficulty of hardware implementation. An innovative pseudo-random integer sequence generator is proposed. In chaotic system, the result of one-iteration is used as the shift value of two binary sequences, the original symmetry relationship is changed, and then XOR operation is performed to generate a new binary sequence. Multiple iterations can generate pseudo-random integer sequences. Here integer sequences have been used in scrambling of pixel positions. Meanwhile, this paper demonstrates that there is an inverse operation in the XOR operation of two binary sequences. A new pixel diffusion technique based on bit compass coding is proposed. The key vector of the algorithm comes from the original image and is hidden by image encryption. The efficiency of our proposed method in encrypting a large number of images is evaluated using security analysis and time complexity. The performance evaluation of algorithm includes key space, histogram differential attacks, gray value distribution(GDV),correlation coefficient, PSNR, entropy, and sensitivity. The comparison between the results of coefficient, entropy, PSNR, GDV, and time complexity further proves the effectiveness of the algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call