Abstract

A coupled-dipole approach is proposed in order to study the coupling between the probe tip and the rough sample in SNOM. In the present model both the optical probe tip and the sample protrusions are represented by polarizable dipole spheres. The induced polarization effects on the sample surface can be replaced by the image dipoles in the circumstance of quasi-static electromagnetic field approximation. Applying the radiation theory of the dipole, we have established a set of self-consistent equations to describe the field distribution at the sites of the probe tip and the sample protrusions. The results are completely the same as those obtained by means of the dyadic electromagnetic propagator formalism and also the derivation procedure is relatively simple. This method permits us to analyze the physical mechanisms of the interaction between the probe tip and the rough surface in SNOM intuitively. Based on this approach, we further discuss the influence of polarization of the incident light on the imaging quality. The calculating result shows that the shape and the contrast of the images of the sample are both sensitive to the field polarization, and the z-polarized mode is proved to give better resolution in SNOM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.