Abstract
We propose a new strategy to evaluate the quality of multi and hyperspectral images, from the perspective of human perception. We define the spectral image difference as the overall perceived difference between two spectral images under a set of specified viewing conditions (illuminants). First, we analyze the stability of seven image-difference features across illuminants, by means of an information-theoretic strategy. We demonstrate, in particular, that in the case of common spectral distortions (spectral gamut mapping, spectral compression, spectral reconstruction), chromatic features vary much more than achromatic ones despite considering chromatic adaptation. Then, we propose two computationally efficient spectral image difference metrics and compare them to the results of a subjective visual experiment. A significant improvement is shown over existing metrics such as the widely used root-mean square error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.