Abstract

We develop a statistical model for images that explicitly captures variations in local orientation and contrast. Patches of wavelet coefficients are described as samples of a fixed Gaussian process that are rotated and scaled according to a set of hidden variables representing the local image contrast and orientation. An optimal Bayesian least squares estimator is developed by conditioning upon and integrating over the hidden orientation and scale variables. The resulting denoising procedure gives results that are visually superior to those obtained with a Gaussian scale mixture model that does not explicitly incorporate local image orientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.