Abstract

In this paper the problem of image denoising is approached using sparse approximation of local image patches. The small patches are extracted by sliding square windows. An adaptive window selection procedure for local sparse approximation is proposed, which affects the global recovery of underlying image. Ideally the adaptive window selection yields the minimum mean square error (MMSE) in recovered image. This framework gives us a clustered image based on the selected window size, then each cluster is denoised separately using sparse approximation. The results obtained using the proposed framework are very much comparable with the recently proposed denoising techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.