Abstract

We propose a new variational model for image denoising, which employs the $L^{1}$-norm of the mean curvature of the image surface $(x,f(x))$ of a given image $f:\Omega\rightarrow\mathbb{R}$. Besides eliminating noise and preserving edges of objects efficiently, our model can keep corners of objects and greyscale intensity contrasts of images and also remove the staircase effect. In this paper, we analytically study the proposed model and justify why our model can preserve object corners and image contrasts. We apply the proposed model to the denoising of curves and plane images, and also compare the results with those obtained by using the classical Rudin-Osher-Fatemi model [Phys. D, 60 (1992), pp. 259-268].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.