Abstract

In this study, the authors fit three univariate mixture distributions to the image coefficients in four sparse domains [ordinary discrete wavelet transform (DWT), discrete complex wavelet transform (DCWT), discrete contourlet transform (DCOT) and discrete curvelet transform (DCUT)]. By estimating the parameters of these mixture priors locally using adjacent coefficients in the same scale, the authors characterise the heavy-tailed nature and the intrascale statistical dependency of these coefficients. Using these mixture-local-priors, the authors derive estimators using maximum a posteriori (MAP) and minimum mean squared error (MMSE) for image denoising. Using the proposed shrinkage functions in these sparse domains for various window sizes from our simulations, we conclude that: (i) among these transforms the DCWT is preferred both in terms of performance and computational cost; (ii) the best window size for denoising depends on the noise level and type of image; (iii) incorporating interscale dependency into the denoising process results in some improvement only for uncrowded images, and (iv) the MMSE estimators outperform the MAP estimators if the input peak signal-to-noise ratio (PSNR) is greater than 28 dB and the MAP estimators are preferred for PSNR smaller than 22 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call