Abstract

In view of the problem that the noise in the image will have a negative impact on the subsequent image processing, this paper proposes a noise reduction algorithm based on the dual-tree complex wavelet transform and convolutional neural network by using the characteristics of the DTCWT and CNN. Firstly, the two-dimensional image is decomposed into two parallel wavelet trees by double tree complex wavelet transform, which forms six high-frequency detail parts and two same low-frequency parts in different directions. Then, it is put into the designed deep convolution neural network for training, Finally, the six high-frequency components and one of the low-frequency components are recombined into the image after noise reduction by using the inverse transform of double tree complex wavelet. The simulation results show that PSNR and MS-SSIM of the image are better than other noise reduction algorithms, and the details of the original image can be restored well while noise reduction. It has practical application value in the case that the collected image has a large noise due to various reasons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.