Abstract

This paper presents a method to reduce noise and refine detail features of a scene based on an iteratively reweighted least squares method. The performance of the proposed filter, called the iteratively reweighted least squares filter (IRLSF), was compared with the state-of-the-art filters by checking their ability to recover simulated edge models under various degrees of noise contamination. The results of the simulation comparison show that IRLSF is superior to the other filters in terms of its ability to recover the original edge models. To apply IRLSF to real images of a scene captured by a camera, a procedure composed of corner detection, least squares matching, bilinear resampling, and iteratively reweighted least squares is proposed. The experimental results show that IRLSF produces mean images that are effectively denoised, and that its accuracy is less than one half of grey-level-quantization-unit of test images captured by a commercial camera.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.