Abstract

To address the problems that most convolutional neural network-based image defogging algorithm models capture incomplete global feature information and incomplete defogging, this paper proposes an end-to-end convolutional neural network and vision transformer hybrid image defogging algorithm. First, the shallow features of the haze image were extracted by a preprocessing module. Then, a symmetric network structure including a convolutional neural network (CNN) branch and a vision transformer branch was used to capture the local features and global features of the haze image, respectively. The mixed features were fused using convolutional layers to cover the global representation while retaining the local features. Finally, the features obtained by the encoder and decoder were fused to obtain richer feature information. The experimental results show that the proposed defogging algorithm achieved better defogging results in both the uniform and non-uniform haze datasets, solves the problems of dark and distorted colors after image defogging, and the recovered images are more natural for detail processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.