Abstract

Digital autoradiography (DAR) is a powerful method to determine quantitatively the "small-scale" (i.e., submillimeter) distribution of a radiotracer within a tissue section. However, the limited spatial resolution of the DAR image, due to blurring by the point spread function (PSF), can result in a poor correlation with tissue histology and immunohistochemistry. The authors attempt to overcome this limitation by recovering the radiotracer distribution by image deconvolution using the Richardson-Lucy algorithm and a measured PSF obtained from a small radioactive source on hydrophobic microscope slide. Simulation studies have shown that the deconvolution algorithm reliably recovers the pixel values corresponding to the radioactivity distributions. As an example, the proposed image restoration approach has been tested with DAR images of different radiolabeled markers on tumor sections obtained from clinical and preclinical animal model studies. Digital autoradiograms following deconvolution show improved sharpness and contrast relative to the unprocessed autoradiograms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.