Abstract

Low-rank matrix approximation has been successfully applied to numerous vision problems in recent years. In this paper, we propose a novel low-rank prior for blind image deblurring. Our key observation is that directly applying a simple low-rank model to a blurry input image significantly reduces the blur even without using any kernel information, while preserving important edge information. The same model can be used to reduce blur in the gradient map of a blurry input. Based on these properties, we introduce an enhanced prior for image deblurring by combining the low rank prior of similar patches from both the blurry image and its gradient map. We employ a weighted nuclear norm minimization method to further enhance the effectiveness of low-rank prior for image deblurring, by retaining the dominant edges and eliminating fine texture and slight edges in intermediate images, allowing for better kernel estimation. In addition, we evaluate the proposed enhanced low-rank prior for both the uniform and the non-uniform deblurring. Quantitative and qualitative experimental evaluations demonstrate that the proposed algorithm performs favorably against the state-of-the-art deblurring methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.