Abstract
Emerging trends in the widespread use of technology has led to proliferation of images and videos acquired and distributed through electronic devices. There is an increasing need towards capturing high fidelity images and filtering of the concomitant noise inevitable in the capture, transmission and reception of the same. In this paper, we propose an OPSS (Optimized Patch based Self Similar) filter that exploits concurrently the photometric, geometric and graphical patch similarities of the image. This model recognizes similar patches to segregate the corrupted from the uncorrupted pixels in an image and improve the performance of denoising. Photometric patch similarity is established by using Non-Local Means Decision Based Unsymmetrical Trimmed Median (NLM-DBUTM) filter, which computes weights based on the reference patch. The geometrical patch similarity is done through the K-means clustering and graphically similar patches are identified through Ant Colony Optimization (ACO) technique. These “three similarities” based models have been taken advantage of and combined to arrive at a more comprehensive and effective denoising. The results obtained through the OPSS algorithm demonstrate improved efficiency in removing Gaussian and Impulse noise. Experimental results demonstrate that our proposed study achieves good performance with respect to other denoising algorithms being compared. Experimental results are based on performance measure (evaluation parameters) through Peak Signal to Noise Ratio (PSNR), Mean squared error (MSE) and Structural Similarity Index Measure (SSIM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.