Abstract

In this paper, we propose a novel cosegmentation algorithm based on active contour model which utilizes local and global image statistics. Many localized region-based active contour models have been proposed to solve a challenging problem of the property (such as intensity, color, texture, etc.) inhomogeneities that often occurs in real images, but these models usually cannot reasonably evolve the curve in this situation that some center points along the curve are in homogeneous regions and their local regions are far away from the object. In order to overcome the difficulties we selectively enlarge the driven force of some points and introduce the edge indicator function to avoid the curve over-shrinking or over-expanding on the salient boundaries. In addition, we introduce global image statistics to better the curve evolution and try to avoid the given energy functional converging to a local minimum. Practical experiments show that our algorithm can obtain better segmentation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.