Abstract

Previously we introduced image correlation spectroscopy (ICS) as an imaging analog of fluorescence correlation spectroscopy (FCS). Implementation of ICS with image collection via a standard fluorescence confocal microscope and computer-based autocorrelation analysis was shown to facilitate measurements of absolute number densities and determination of changes in aggregation state for fluorescently labeled macromolecules. In the present work we illustrate how to use ICS to quantify the aggregation state of immunolabeled plasma membrane receptors in an intact cellular milieu, taking into account background fluorescence. We introduce methods that enable us to completely remove white noise contributions from autocorrelation measurements for individual images and illustrate how to perform background corrections for autofluorescence and nonspecific fluorescence on cell population means obtained via ICS. The utilization of photon counting confocal imaging with ICS analysis in combination with the background correction techniques outlined enabled us to achieve very low detection limits with standard immunolabeling methods on normal, nontransformed human fibroblasts (AG1523) expressing relatively low numbers of platelet-derived growth factor- β (PDGF- β) receptors. Specifically, we determined that the PDGF- β receptors were preaggregated as tetramers on average with a mean surface density of 2.3 clusters μm −2 after immunolabeling at 4°C. These measurements, which show preclustering of PDGF- β receptors on the surface of normal human fibroblasts, contradict a fundamental assumption of the ligand-induced dimerization model for signal transduction and provide support for an alternative model that posits signal transduction from within preexisting receptor aggregates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.