Abstract

Image copy-move forgery is a common simple tampering technique. To address issues such as high time complexity in most copy-move forgery detection algorithms and difficulty detecting forgeries in smooth regions, this paper proposes an image copy-move forgery detection algorithm based on fused features and density clustering. Firstly, the algorithm combines two detection methods, speeded up robust features (SURF) and accelerated KAZE (A-KAZE), to extract descriptive features by setting a low contrast threshold. Then, the density-based spatial clustering of applications with noise (DBSCAN) algorithm removes mismatched pairs and reduces false positives. To improve the accuracy of forgery localization, the algorithm uses the original image and the image transformed by the affine matrix to compare similarities in the same position in order to locate the forged region. The proposed method was tested on two datasets (Ardizzone and CoMoFoD). The experimental results show that the method effectively improved the accuracy of forgery detection in smooth regions, reduced computational complexity, and exhibited strong robustness against post-processing operations such as rotation, scaling, and noise addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call