Abstract
Image contrast enhancement is investigated for two-photon excitation fluorescence images of a microscopic sample that is buried underneath a turbid medium. The image contrast, which deteriorates rapidly with sample depth because of scattering loss, is enhanced by an increase in the average excitation power of the focused Gaussian (the TEM(00) mode) beam according to a compensation relation that has been derived by use of a Monte Carlo analysis of the scattering problem. A correct increase in the excitation power results in a detected fluorescence signal that remains invariant with sample depth. The scheme is demonstrated on images of DAPI-stained nuclei cells viewed underneath a suspension of 0.105-mum-diameter polystyrene spheres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.